Application and evaluation of knowledge graph embeddings in biomedical data
نویسندگان
چکیده
منابع مشابه
Convolutional 2D Knowledge Graph Embeddings
Link prediction for knowledge graphs is the task of predicting missing relationships between entities. Previous work on link prediction has focused on shallow, fast models which can scale to large knowledge graphs. However, these models learn less expressive features than deep, multi-layer models – which potentially limits performance. In this work we introduce ConvE, a multi-layer convolutiona...
متن کاملInducing Interpretability in Knowledge Graph Embeddings
We study the problem of inducing interpretability in KG embeddings. Specifically, we explore the Universal Schema (Riedel et al., 2013) and propose a method to induce interpretability. There have been many vector space models proposed for the problem, however, most of these methods don’t address the interpretability (semantics) of individual dimensions. In this work, we study this problem and p...
متن کاملassessment of deep word knowledge in elementary and advanced iranian efl learners: a comparison of selective and productive wat tasks
testing plays a vital role in any language teaching program. it allows teachers and stakeholders, including program administrators, parents, admissions officers and prospective employers to be assured that the learners are progressing according to an accepted standard (douglas, 2010). the problems currently facing language testers have both practical and theoretical implications but the first i...
Expeditious Generation of Knowledge Graph Embeddings
Knowledge Graph Embedding methods aim at representing entities and relations in a knowledge base as points or vectors in a continuous vector space. Several approaches using embeddings have shown promising results on tasks such as link prediction, entity recommendation, question answering, and triplet classification. However, only a few methods can compute low-dimensional embeddings of very larg...
متن کاملFast Linear Model for Knowledge Graph Embeddings
This paper shows that a simple baseline based on a Bag-of-Words (BoW) representation learns surprisingly good knowledge graph embeddings. By casting knowledge base completion and question answering as supervised classification problems, we observe that modeling co-occurences of entities and relations leads to state-of-the-art performance with a training time of a few minutes using the open sour...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PeerJ Computer Science
سال: 2021
ISSN: 2376-5992
DOI: 10.7717/peerj-cs.341